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1 Single omics methods

Due to the large amount of data to be exploited in a multi-omics framework, a unique
pre-processing at each multi-omics layer has been performed. This sometimes included
the imputation of missing values as well as the introduction of methods to reduce the
dataset dimensions to make judicious selections of omics variables. A total of 444 par-
ticipants were included in the study but only 330 of them had all the metabolomic,
transcriptomic, clinical, PRS and methylation data. In order to gain statistical power
in the pre-processing stages, inequal numbers of participants were used to make vari-
able selections (Figure 1, original paper). Thus, the pre-processing of each layer was
performed using the maximum number of individuals from the initial 444 participants.
Once the 330 participants were selected in the multi-omics phase, only the twin pairs
were selected for the modeling phase. The remaining 20 singletons were used to tune
the sMBPLS design (see original paper).

1.1 Blood pressure measurements

Four systolic and diastolic blood pressure measurements were collected for n=444 par-
ticipants with no missing blood values. A blood pressure correction was performed for
participants taking antihypertensive drugs corresponding to an increase of 15mmHg and
10mmHg in systolic and diastolic measurements respectively. Due to stress or white coat
effect, possible biases were suspected (Vilaplana, 2006). The use of all these systolic
and diastolic blood measurements in an averaged form was therefore questioned. Two
multiple linear regressions confirmed these doubts by showing a significantly non-null
association of the measurement times once one-hot encoded on both diastolic and sys-
tolic blood pressure (two-tailed Student’s t test, p − value < 5%) controlling for sex,
age and zygosity status of the participant. An approach based on euclidean distances
between measurements then highlighted the proximity between two groups of measure-
ments; the first two and the last two. The choice was therefore made to average only
the last two diastolic (resp. systolic) measurements since they differed strongly from
the two first measurements, which corresponds to the empirical choice made in Huang
et al (Huang et al., 2018). Hereafter, the term diastolic (resp. systolic) blood pressure
(DBP) (resp. SBP) refers to the diastolic (resp. systolic) variable by means of the last
two measurements.

1.2 Metabolomics data

Metabolomic data were collected for n = 434 individuals, including 212 twin pairs and
10 singletons. A total of 234 numerical variables were subject to pretreatment. The
variable measuring peroxide levels was only measured in 64 of the 434 individuals and
was therefore removed from the set of variables. Of the remaining 233 variables, 44 had
at least one missing value but only two had a missing value rate of more than 10%.
Regarding the nature of these missing values, it was judged consistent to consider them
as missing (completly) at random (MAR/MCAR) since the presence of missing values
is only subject to measurement errors. Before imputing missing values, a sorting of the
variables according to the inter-variable correlations was carried out within the frame-
work of a complete case, i.e. by considering only the 296 individuals with no missing
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values. Variables for which at least one other variable correlated at more than 90% in
absolute value was detected were removed, taking care to keep at least one representa-
tive among each batch of correlated variables. Variables with missing values have been
deleted in priority, thus reducing the number of variables to be imputed to 29 variables
instead of the initial 44.

While the use of multiple imputation methods is now globally accepted as a gold stan-
dard, the use of these methods requires a rigorous methodology (Hayati Rezvan et al.,
2015). Due to persistent collinearities within the pre-selected variables, the use of the
Amelia (Honaker et al., 2011) package was preferred to the mice (van Buuren et al.,
2011) package as it allows the integration of a Ridge penalty to counter the problems
of matrix inversion caused by the presence of persistent correlations. This penalization
reduces the variance at the cost of a slight bias expected as to be minimal. Amelia
was therefore used to impute missing values from the Expectation-Maximization with
Bootstrapping algorithm (EMB). Imputation assumes as main assumption that the
complete data, both observed and unobserved, are multivariate normal. This central
assumption was considered to be verified as the metabolomic variables are expected
to follow gaussian distributions. The Ridge penalty was set at 0.5%n and did not ex-
ceed the 1%n threshold as advised by the authors of the package. A total of m = 50
datasets were generated in order to calculate pooled estimates. A minimum burn-in of
100 iterations has also been stated. Finally, the distributions of imputed values versus
non-imputed values were performed as a diagnostic (Abayomi et al., 2005) and only one
variable (LVLDLFC: free cholesterol to total lipids ratio in large VLDL) was removed
after diagnosis due to aberrant distributions, leading to a final dataset composed of 105
metabolomic variables.

1.3 Methylation data

A total of 360 samples corresponding to 360 participants for whom blood measure-
ments were available were obtained via Illumina 450k. The use of the minfi (Aryee
et al., 2014) package allowed pre-processing of the raw data. Quality control was per-
formed and no samples were rejected by observing the chipwide medians of the Meth
and Unmeth channels (classic cutoff of 10.5). According to Cazaly et al (Cazaly et al.,
2016), stratified quantile normalization (sometimes combined with ComBat (Leek et
al., 2012)) were consistently found to be the most appropriate normalization method
in Illumina 450k methylation array data in familial analyses. Stratification by quantile
was therefore carried out via minfi but no correction for the batch effect was made as
the batch sizes were considered too small. The sex of the participants was recorded
via clinical data and as the presence of SNPs in the probe body or at the nucleotide
extension can have important consequences on the downstream analysis, probes with
high bias potential were removed via the minfi package as advised by its authors. A
total of 11’648 probes were also removed from the study because they were affiliated
with the X and Y sex chromosomes. Finally, all values were transformed into β-values,
i.e., defined as the ratio between the methylated intensity of the signal and the total
intensity (methylated and unmethylated with one constant usually set to 100).
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A selection of the probes once annotated by their genes was made via elastic-net (Zou
et al., 2005). The elastic- net regression is defined as a penalised regression integrating
a convexity coefficient α ∈ [0, 1] allowing the combination of Lasso penalisation (α =
1) and Ridge penalisation (α = 0). This method has many advantages over a Lasso
or Ridge regression, making it a commonly used method in exploratory approaches
(Domingo-Relloso et al., 2021; Benton et al., 2017) in the framework of correlated epi-
genetic variables. It allows the selection of groups of variables, which a traditional Lasso
regression cannot do. It also allows the selection of a larger number of variables than
a Lasso regression for which the limit of selected variables is majorized by the num-
ber of individuals (”p < n”), which in the context of epigenetic variables is restrictive
(Waldmann et al., 2013). In order to reinforce its use, a multi-task design re- gressing
a pair of variables in a multi-Gaussian framework was carried out via the use of glmnet
(Friedman et al., 2010).

It has been judged important to correct for certain effects such as age and sex, which are
known to be de facto linked to methylation (Boks et al., 2009). It was considered heavy-
handed to include clinical control variables in the modeling within epigenetic variables,
as their predictive potential was too strong and can have a huge impact on the norm
of the coefficient matrix to be penalized. It was therefore decided to linearly regress
systolic and diastolic blood pressure by age, sex and body mass index (BMI) in order
to solve the final model on the systolic and diastolic residuals (SBPr,DBPr) obtained,
i.e. on the part of the information not explained by these control variables. Due to the
existence of an outlier (BMI:36 kg.m2, SBP: 230.2 mmHg, DBP: 116.5 mmHg, Age: 68
years old, Male) who was too important in the sense of Cook’s distance, the control was
performed without taking him into account in order to improve the quality of the con-
trol regression. This participant was included in the downstream study with a predicted
residual systolic and diastolic pressure. The classical assumptions of linear regression
such as homogeneity or normality of the residuals have been checked graphically. Fi-
nally, the convexity parameter α was set 0.15 i.e. close from 0.10 as recommended by
Waldmann et al. (Waldmann et al., 2013). The λ coefficient penalizing the norm of
the coefficient matrix was tuned from a 10-fold cross validation minimising the Mean
Square Error (MSE) criterion. This procedure led to the selection of 545 CpG sites. A
representation in the first PCA plane supported this selection insofar as the individu-
als were arranged in the reduced space according to the non-residual diastolic/systolic
measurements.

1.4 Transcriptomic data

RNA samples were extracted from peripheral leukocytes using the miRNeasy Mini Kit.
Gene expression data at the transcriptome level was obtained using a gene expression
chip. This chip targeted over 48,000 probes that provide transcriptomic coverage of well-
characterised genes (see Huang et al (Huang et al., 2018) for details of how the data
was collected). Of the 402 peripheral blood samples, high quality RNA was obtained
from 391 subjects. Of these 391 participants, two did not participate in the selection of
transcriptomic variables because their blood records were discarded at the beginning of
the study (see subsection 1.1). The use of the lumi (Du et al., 2008) package allowed
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the first steps of the data processing to be carried out. The addition of control data
was carried out. No background correction was used because the data was not previ-
ously corrected when using beadArray. A Variance-Stabilizing Transformation (VST)
was performed instead of a log2 transformation because it allows for better correction
of weak signals (Lin et al., 2008). A Robust Spline Normalization (RSN) combining
quantile and loess normalization was performed iteratively using a random participant
as reference. Only probes with a p-value of detection of less than 5% in at least half of
the participants were retained; a total of slighty more than 19’000 probes were therefore
kept. Probes present on the sex chromosomes were also removed before analysis.
As was done in the pre-processing of methylation data (see section 1.3), it was preferred
to linearly regress SBP and DBP measurements before selecting variables by control
variables to avoid detecting too many probes unrelated to the phenotype of interest. A
control on sex and BMI was performed beforehand in order to build residual diastolic
and systolic measures corresponding to the residuals of the linear regression performed.
The presence of an outlier, the same person as above in section 1.3. detected via Cook’s
distance justified the regression without considering him, before reintegrating this par-
ticipant into the analysis with predicted residual diastolic and systolic values. A Partial
Least Square regression in a sparse version implemented in the mixOmics (Rohart et
al., 2017) package was then run to simultaneously regress the DBPr-SBPr pair in a ma-
trix framework. Two components were selected by 10-fold cross-validation repeated 50
times using the mean square error of prediction (MSEP) as the optimization criterion.
A total of 300 probes to be selected and equally distributed over the two components
were chosen before the procedure (argument keep.X). In order to keep only the most
consistant probes, a stability criterion was used. This consisted of counting the number
of times a probe appeared over the course of the repetitions by cross-validation. Only
probes with a stability greater than 0.8 were retained, i.e., only probes selected in at
least 80% of the iterations during the cross-validation procedure were kept. A total of
83 probes were then retained, of which two were discarded because they did not point
to any known gene.

Among these 81 probes, we note the presence of two pairs of probes pointing to the
MYADM (MYADM and MYADM.1 ) and CD97 (CD97 and CD97.2 ) genes. This fur-
ther demonstrates the ability of sparse Partial Least Square to select variables in the
framework of correlated data. Among the 10 most stable probes in the selection, we
notice the presence of CD97 and MYADM as well as TIPARP and TPPP3 which were
all replicated (Zeller et al., 2017). The presence of the MOK (RAGE ) probe among
the ten most stable probes is noteworthy as it has been shown via mixed models on the
same cohort that MOK was associated with blood pressure (Huang et al., 2018).

1.5 Clinical PRS data

A total of 25 clinical variables including sex , BMI and lymphocyte counts were col-
lected for 440 participants. Among these 25 variables, two were built from raw clinical
variables: BMI and mean pulse rate. Imputation of missing values was only performed
on 3 individuals for whom all omics layers were available. The imputation of these par-
ticipants was carried out via the mice package using the random forest method, which
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is well suited to imputation in the context of chained equations from mixed categorical
and quantitative data. A total of m = 50 datasets were generated over 30 iterations
before calculating the pooled estimates. Graphical representations and convergence di-
agnostics were investigated to ensure the quality of the imputation. Because alcohol
consumption is known to be related to blood pressure (Salvador et al., 2019; Keil et al.,
1991), a variable named Alc characterizing consumption in grams per month (Kaprio
et al., 1987) was added to the set of clinical variables.

Four Polygenic Risk Scores (PRS) were also added to the 330 participants for whom all
omics layers were available. Two of these PRS are associated with diastolic and systolic
blood pressure respectively (UK Biobank: http://www.nealelab.is/uk-biobank/). The
other two PRS characterise the risk of coronary artery disease (Nikpay et al., 2015) and
the risk of obesity (Yengo et al., 2018). These polygenic variables were z-score trans-
formed and PCA corrected (Price et al., 2006) in order to be exploited in the multi-omic
phase.
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YFS Methylation pre-processing

DNA was extracted from EDTA blood samples collected during the 2011 follow-up
using a Wizard Genomic DNA Purification Kit (Promega Corporation, Madison, WI,
USA) according to the manufacturer’s instructions. Genome-wide DNA methylation
levels were obtained using Illumina Infinium MethylationEPIC BeadChips, following the
protocol by Illumina at Helmholtz Zentrum, Munich, Germany. Samples were applied to
the arrays in a randomized order. Aliquots of 1 µg of DNA were subjected to bisulphite
conversion, and a 4-µl aliquot of bisulphite-converted DNA was subjected to whole-
genome amplification, followed by enzymatic fragmentation and hybridization onto an
Illumina Infinium MethylationEPIC BeadChip. The arrays were scanned with the iScan
reader (Illumina). All analyzed samples have a sum of detection p-values across all the
probes of less than 0.01. The logged (log2) median of the methylated and unmethylated
intensities of the analyzed samples clustered well visually. Furthermore, samples for
which the actual sex did not match the predicted sex were excluded. Background
subtraction and dye-bias normalization were performed via the noob method (Triche et
al., 2013), followed by stratified quantile normalization. Probes with a detection p-value
of more than 0.01 in 99% of the samples were filtered out. All pre-processing steps were
performed using functions implemented in the minfi R/Bioconductor package (Aryee et
al., 2014).
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2 Design optimization

The study design as defined in the paper is a mixOmics specificity governing the as-
sociations between omics blocks in covariance maximization in the sparse multi-block
partial least square (sMBPLS) framework. We used 20 singleton participants, without
a twin among the 330 enrolled participants, to tune these associations between omics
(where cq,k is the association between block q and k) and evaluate the impact on the
quality of predictions.

2.1 Methodology

The choice of design also has an influence on the modeling as the design governs the
links between omics blocks. The design matrix C is in our context a 4 × 4 matrix.
The objective was to tune the design matrix to gauge the consequences of increasing
or decreasing an association between blocks i.e., by tuning the cq,k elements between
0 and 1 in a direction that is detailed below. By construction, the design matrix C is
symmetrical in the sense that cq,k = ck,q ∀q, k which clearly reduces the calculation time.

Models with different designs were trained on the 310 participants (155 twin pairs)
before predicting the systolic and diastolic blood pressure of the 20 singleton partici-
pants. These 20 singletons were involved in the variable selection stages, particularly in
the transcriptomic and methylation data; their use for predictive purposes under differ-
ent designs is therefore solely in the interest of detecting the best associations between
blocks to minimise prediction error. In order to estimate the error committed on the
prediction, a metric has been derived and based on the root mean square error (RMSE).
The RMSE for SBP and DBP measurement m, noted RMSEm as defined in the (∆1)
equation, was intended to estimate the error between SBP and DBP measurements m̂i

and their true measurements mi for all individuals i = 1, . . . , Ns (Ns = 20), by squaring
the prediction differences of every individuals.

RMSEm =

[
N∑
i=1

(mi − m̂i)
2 /Ns

]1/2
(∆1)

Because of the different orders of magnitude between systolic and diastolic pressure,
the systolic RMSE was expected to fatally be stronger than the diastolic RMSE. In or-
der to use only one criterion to minimize, a weighted averaged RMSE noted RMSEadj

was preferred. This assigns a weight to each diastolic and systolic RMSE to obtain a
weighted average of the two RMSEs with a greater penalty for deviations in predictions
related to systolic blood pressure, as explained in equation (∆2).

RMSEadj = ωRMSEdia + (1− ω)RMSEsys (∆2)
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with ω =
1

card(D)

∑
di∈D

[
RMSEsys,di

RMSEsys,di +RMSEdia,di

]

The term ω denotes the average importance over all tested designs di ∈ D of the systolic
versus the diastolic RMSE. It has been estimated to be about 60 % (section 2.2). A
design A was therefore considered better than a design B if the RMSEadj associated
with the predictions from design A were lower than the RMSE from the predictions
from design B.

2.2 Results

Before tuning the design matrix C, the cross-validation procedure (original paper ; sup-
plementary document S4) was initiated to find out the optimal number of components
needed to build the multi-omics associations. The goal was therefore to define upstream
the number of components before investigating the possible associations between omics
blocks. A large number of designs were then tested and the optimal number of compo-
nents in the sense of the cross-validation procedure was always found to be far equal to
1. Supplemental Table 1 shows two examples obtained under two trivial designs noted
null design (all associations between omics blocks are null i.e. cqk = 0 for all q and k)
and complete design (all associations are maximal i.e. cqk = 1 for all q and k); k had
therefore been fixed to 1.

Supplemental Table 1: CV score obtained by cross-validation on 3 maximal
components for the two trivial null and complete designs

Number of components Trivial design pooled CV score sd (20 iterations)

k = 1 Complete 164257.4 454.9
k = 2 Complete 311423.8 651.0
k = 3 Complete 541316.2 44879.1
k = 1 Null 168184.3 359.9
k = 2 Null 308303.7 748.1
k = 3 Null 299244.7 3508.7

whether in a null configuration (no association between omics) or a complete configu-
ration (absolute associations between omics), a single component minimized the pooled
CV score obtained by averaging the CV scores over the 20 iterations; the standard
deviation (sd) was also relatively low, confirming the choice of a single component.
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Concerning the associations between omics blocks governed by the design matrix C,
due to the high number of operations to be performed, it was decided to perform a first
step of observation between omics pairs in order to detect aberrant associations largely
increasing the adjusted RMSE. Each cqk (∀q, k ∈ {1, 2, 3, 4} , q 6= k ) coefficient was
tuned two by two as partially shown in Supplemental Figure 1. The methylation data
proved to be particularly unstable in that tuning the association between the methy-
lation block and the clinical PRS block (c12) to non-zero values caused the adjusted
RMSE to increase significantly.

The two graphs represent two pairs of tuned coefficients. The first one (above)
shows how the association of the Methylation block with the Clinical PRS block
blows up the adjusted RMSE compared to the c14 coefficient that have a very
small impact on the adjusted RMSE. The second plot (below) shows that a fairly
weak association between transcriptome and methylome minimises the adjusted
RMSE, with a much more reasonable scale than that found in the other contour
plot.

Supplemental Figure 1: Contour plot of some combinations of
omics associations and their impact on the RMSEadj measure.
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A similar finding was reported in tuning the association between the Methylation
block and the Metabolomics block (c24). This is notably illustrated in Supplemental
Figure 1 where increasing (c12) significantly disturb the adjusted RMSE; a maximum
deviation of the adjusted RMSE of more than 70% in both cases was observed when
tuning the values of the c12 or c24 coefficients. Only the Transcriptomics-Methylation
association was found to be relevant for a low c23 value (c23 ' 0.1) (Supplemental Fig-
ure 1). Paradoxically, certain combinations of block omics had little or no impact on
the evolution of the adjusted RMSE, as in the case of the Clinical PRS/Metabolomics
combination (Supplemental Figure 1, coefficient c14).

Once this first exploratory phase was completed, four main associations were submitted
to the algorithm in order to determine those that minimized the adjusted RMSE: c13,
c14, c23, c34 (Clinical PRS:1 ;Methylation:2 ;Transcriptomics:3 ;Metabolomics:4 ). The
Methylation block was therefore only prospected to be coupled with the transcriptomic
block, thus reducing exponentially the computation time. 11 probable values of each
coefficient were prospected (from 0 to 1 by 0.1), leading to M = 114 = 14′641 adjusted
RMSE calculated (ω = 60.0%). Two non-zero association coefficients minimized the
adjusted RMSE; c14 = 0.4 and c23 = 0.1. However, the c14 coefficient has been par-
ticularly insensitive, as a change in its value had little impact on the adjusted RMSE
(within one standard deviation).

It was finally observed that linking methylation data with transcriptomic data with a
weak strength (c23 = 0.1) as well as clinical PRS data with metabolomic data (c14 = 0.4)
minimized the adjusted RMSE error in predicting the blood pressure values of the 20
singletons.

14



— S4 —

15



Integration of a cross validation procedure to the multi-block sparse
partial least square (sMBPLS)

last version: January 2022

Forewords

In this Markdown document, we present a cross-validation method introduced in the paper by Li et al. (Li
et al., 2012) and implemented using the features of mixOmics (Rohart et al., 2017). This cross-validation
method tunes the sparse arguments as well as the number of components to be selected in a multi-block
sparse partial least squares (sMBPLS) framework. The implementation was done with R [R version 4.0.5]
using the block.spls mixOmics function and all the features that revolve around it. A complete tutorial
applied to Opensource data is available upon request to the authors.

1. Implementation of the cross-validation procedure

In the following, we use the same notation as in the article by Li et al (Li et al., 2012)(section 2.5, page
2461). The method described in this article is limited to 4 blocks to facilitate the understanding: the
implementation carried out takes into account n blocks. The use of functions implemented in R base was
preferred, and only the graphic representations relies on external aesthetic packages.

suppressWarnings(suppressMessages(library(mixOmics)))
# mixOmics is needed for the whole implementation
suppressWarnings(suppressMessages(library(ggplot2))) #graphics with ggplot2
suppressWarnings(suppressMessages(library(viridis)))
# viridis is used to take color palettes (optionnal : graphics)
suppressWarnings(suppressMessages(library(cowplot)))# using grids / ggplot2

Implementation limitation criteria:
The implemented method does not allow to select variables within the Y matrix: no sparse argument (λn)
can be tuned. This argument λn has therefore been set to M=ncol(Y) and all the variables of the Y matrix
have been kept. Only the arguments related to the blocks used to regress Y can be tuned. A design is also
necessary to use the implemented cross-validation and must be defined beforehand, as shown subsequently.
We have considered by default an identity matrix design of dimensions equal to the number of blocks plus one
(n+1 ) but this design can be modified. Finally, the cross-validation is based on a distribution of individuals
in L groups of equal size. The use of cross-validation can therefore only take place if the number of individuals
in the study is the dividend of a Euclidean division with quotient L and remainder zero.

1.1 Inventory of implemented functions

The implementation of cross-validation has been segmented into several functions in order to facilitate
both the understanding of the code and the step-by-step control of what has been coded. Among the
five functions presented, one has a purely graphical purpose while the cv.block.spls function is the mother
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function using the last three purely technical functions. The role of each of these five functions is described
below and the implementation details for each follow in subsections 1.2 through 1.6 .

⋄ put_indiv_in_L_groups : This first technical function has the objective of distributing the in-
dividuals considered in the study in L groups. It corresponds to the first step 1) of the Li et al. publication.

⋄ get_coefficients : This second technical function takes as input the output of the put_indiv_in_L_groups
function and applies part 2a) of the Li et al. paper. It stores in output the projection coefficients defined
as ξl

i = Xi
i w−l

i (i = 1, . . . , n − 1) and ζl = Y lq−l times the transposed associated loading matrices. The
output is thus according to Li et al. notations a list of matrices corresponding to ξl

iw−lT

i and ζlq−lT for
each omics block i and each l = 1, . . . , L.

⋄ get_CVscore : This technical function calculates the CV score defined in part 2b) of the origi-
nal publication. It takes as input the terms ξl

iw−lT

i and ζlq−lT computed by the get_coefficients function.
This function returns as output the CV score obtained for a defined combination of the parameters.

⋄ cv.block.spls : The cv.block.spls function compiles all the outputs of the three technical func-
tions. It mainly integrates the loops running these functions and at the end generates as output a list
containing the CV scores according to all the combinations of the parameters, and this for each iteration.

⋄ plot.best.designs : This function allows the user to get a graphical representation of the cross-
validation CV scores when a number strictly greater than 2 omics are integrated as predictors. Because of
the large combinations between parameters to be tested, it was chosen to only represent the best combination
of parameters minimizing the CV score, by integrating error bars of length 1 standard deviation built with
successive iterations.

1.2 function put_indiv_in_L_groups

The function put_indiv_into_L_groups has the unique goal of distributing all the individuals considered in
L equal groups. It therefore takes as input both a list X composed of omics blocks, the number L of groups
to be formed (L-fold cross validation) and a seed argument. This last argument seed has for simple objective
to distribute the individuals in a unique way at each iteration of the cross-validation.

# L : number of groups to make
# current.seed is determined in the main mother function cv.block.spls
# X is only used to get the number of individuals according to the first block

put_indiv_in_L_groups <- function(L,current.seed,X){
L <- L #optional
set.seed(current.seed)
myIDs <- rownames(X[[1]]) #IDs of all the individuals

# give error message if nrow(X[[1]])%%L != 0 :
if(nrow(X[[1]])%%L != 0){

stop("Please choose L so that it distributes the number of individuals
into groups of equal size ")

}
# The Li matrix will stock all individuals into their L groups
Li <- matrix(data=NA,ncol=L,nrow=nrow(X[[1]])/L)

for(i in 1:L){
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Li[,i] <- sample(myIDs,replace = F,size = nrow(X[[1]])/L) #no replacement
myIDs <- myIDs[-which(myIDs %in% Li[,i])]

}
return(Li) # final matrix with L columns and X[[1]])/L rows (individuals names)

}

1.3 function get_coefficients

The get_coefficients function is first used to obtain the ξi and ζ coefficients as defined in phase 2) of the Li
et al. paper. In output, it returns the terms ξl

iw−lT

i and ζlq−lT . It takes as input both the omics blocks X
and the matrix Y to be regressed. It also depends on the function put_indiv_into_L_groups from which it
inherits the matrix Li distributing the individuals in L equal groups. Finally, the function takes as input the
number of components k to be retained when using the function block.spls as well as the argument list.keepX
which depends directly on the combinations of the choosen sparse parameters.

get_coefficients <- function(X,Y,list.keepX,k,Li){
#build lists to store coefficients * t(loading matrices)
CV.list <- list() # CV.list will store as many lists as omic blocks
for(i in 1:length(X)){

CV.list[[i]]<-list()
names(CV.list)[i]<-paste0("CV",i)

}
# ad a list for zeta (Y matrix)
CV.list[[length(X)+1]]<-list();names(CV.list)[length(X)+1]<-"CVzeta"

### cross-validation
for(i in 1:ncol(Li)){ # for each group of individual l=1,...,L

# preparing cross-validation datasets for group i
X.cv <- list() #X for CV : X1^-l, ..., Xn-1^-l
for(j in 1:length(X)){

X.cv[[j]] <- X[[j]][-which(rownames(X[[j]]) %in% Li[,i]),]
}
names(X.cv)<-names(X) #get the same names to use block.spls function
Y.cv <- Y[-which(rownames(Y)%in%Li[,i]),] # Y for CV : Y^-l
names(Y.cv)<-names(Y)

# tune the model with the X.cv and Y.cv datasets + list.keepX and k
MyResult.diablo <- block.spls(X.cv, Y.cv, keepX=list.keepX,ncomp=k,

design = MyDesign ,mode = "regression")
# a design has been choosen upstream

#store Xi coefficients for each omic layer
Xi.list<-list() #this list only permits to store temporary the coefficients

for(s in 1:length(X)){
Xi.list[[s]] <- as.matrix(X[[s]][Li[,i],]) %*%

as.matrix(MyResult.diablo$loadings[[s]])
names(Xi.list)[s] <- paste0("Xi",s)

}
# store Zeta coefficients into Zeta Matrix
Zeta <- as.matrix(Y[Li[,i],]) %*% as.matrix(MyResult.diablo$loadings$Y)
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# fill CV lists to get Xi^l * t(omega^l)
for(s in 1:length(X)){

CV.list[[s]][[i]] <- Xi.list[[s]] %*% t(as.matrix(MyResult.diablo$loadings[[s]]))
}
# fill the last CV argument to get Zeta^l * t(q^l)
CV.list[[length(X)+1]][[i]] <- Zeta %*%

t(as.matrix(MyResult.diablo$loadings[[length(X)+1]]))
}
# the CV.list is composed of n lists where n is the number of omics (+ Y)
# for each of these lists, there are L matrices stored so that this matrices
# are Xi^l * t(omega^l) (l=1,...,L) and Zeta^l * t(q^l) (l=1,...,L)
return(CV.list)

}

1.4 function get_CVscore

The function get_CVscore takes several arguments insofar as it aims to give for each combination of sparse
arguments λis (comb) a CV score defined in step 2b) of Li et al. and that it stores in a dataframe mydf at
row number ind. It inherits the coefficients multiplied to the transpose of the associated loading matrices
(CV.list) as well as the Li matrix distributing the individuals into one of the L groups. The argument
combinations is the matrix of the set of sparse argument combinations (λis). Finally, the list of blocks
X, the matrix Y and the number of selected components k are filled in with the list of sparse arguments
list.keepX.cv.

get_CVscore <- function(CV.list = CV.,Li,X=X,Y=Y, L,list.keepX.cv,k,comb,
mydf=mydf,combinations=combinations,ind=ind){

# compute CV score
CVscore <- 0 #initially zero

### first part of the CV score :

for(i in 1:length(X)){
for(l in 1:L){

# the Frobenius norm is taken between the difference of
# CV.list matrices and Xi^l
norm. <- base::norm(as.matrix(X[[i]][which(rownames(X[[i]]) %in% Li[,l]),]) -

as.matrix(eval(parse(text = paste("CV.list[[",i,"]][[",l,"]]",
sep = "")))),type = "F")

# sum for every iteration by putting penalties due to L/arguments
CVscore <- CVscore + (norm.**2)/(length(Li[,l])*list.keepX.cv[[i]][1])

} # we take list.keepX.cv[[i]][1] since the same lambda i is applied
# to all the components

}

### second part of the CV score :

for(l in 1:L){
# Frobenius norm with Y and zeta*t(q^-l)
norm. <- base::norm(as.matrix(Y[which(rownames(Y) %in% Li[,l]),]) -

4



as.matrix(eval(parse(text = paste("CV.list[[",length(X)+1,"]][[",l,"]]",
sep = "")))),type = "F")

# sum
CVscore <- CVscore + (norm.**2)/(length(Li[,l])*ncol(Y)) #Y non sparse

} # we divide by M=ncol(Y) since we consider no sparsity for Y
# store it in mydf
mydf[ind,]<-c(k,as.integer(combinations[comb,]),CVscore)
# the row number ind is filled with the number of component kept, the sparse
# arguments and final CVscore obtained
return(mydf)

}

1.5 function cv.block.spls

The function cv.block.spls is the mother function taking as input the data X and Y as well as a lambda.list
containing all the sparse arguments to be tested. For each omics i, a vector containing the set of sparse
arguments λi to test is specified. The number of components k to be tested is then scanned (from 1 to k)
and the number of iterations is provided by the user. It is recommended to set the number of iterations to
at least 10 so that the graphical output (plot.best.designs function) is robust.

# X is the list of omics layers
# Y must be a matrix or dataframe to regress
# lambda.list is the sparsity argument and must be a list
# n.repeat is how many times the cross-validation must be repeated

cv.block.spls <- function(X,Y,k=3L,lambda.list,n.iter=1L,show_progress=T){
# check assumption : lambda.list must be a list
if(is.list(lambda.list)==F){stop("lambda.list argument is not a list")}

### calculate number of iterations
# number of needed iterations for each component :
numb <- n.iter
for(l in 1:length(lambda.list)){

numb <- numb*length(lambda.list[[l]])
}

# all combinations to test : cross-validation procedure
combinations <- expand.grid(lambda.list) # these combinations
# need to be tested for each component k, n.iter times

# build a final list that will store the tables mydf for each iteration
CV.iter.final.score <- list() #will be the output

#iteration steps

for(iter in 1:n.iter){
set.seed(.Random.seed[1:n.iter][iter]) #generate random seeds
#important for the cross-validation and especially for the function
# put_indiv_into_L_groups

# Progress bar settings :
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if(show_progress==T){pb <- txtProgressBar(min = 0, max = numb*k/n.iter,
style = 3,width = 40,char = "=")

#the progress bar will be restarted at each iteration
cat(paste(" // iteration number :", iter, ""))}

# final output will be a list of theses dataframes :
mydf <- data.frame(matrix(NA,nrow=numb/n.iter*k,ncol=(length(X)+2)))
# +2 because : number of components and CVscore
colnames(mydf)<-c("number of comp",names(X),"CVscore")

ind <- 1 # row index to fill in mydf
# for each component :
for(k. in 1:k){
#for each combination of sparse arguments

for(comb in 1:nrow(combinations)){
list.keepX.cv <- list() # we suppose same number of select var for all comp
for(i in 1:(ncol(combinations))){

list.keepX.cv[[i]] <- rep(combinations[comb,i],k.)}
names(list.keepX.cv)<-names(X) #list.keepX.cv is the cross-validation
# list.keepX : it takes a combination of sparse arguments and apply
# them to each component k.

###### using technical functions to get CV scores for each combination
Li. <- put_indiv_in_L_groups(10,.Random.seed[1:n.iter][iter] ,X)
CV. <- get_coefficients(X,Y,list.keepX = list.keepX.cv,

k=k.,Li = Li.)
mydf <- get_CVscore(CV.list = CV.,Li=Li.,X,Y,L=10,list.keepX.cv = list.keepX.cv,

k=k.,comb=comb,mydf=mydf,
combinations=combinations,ind=ind)

ind <- ind+1 # once the CV score is done, increase the row number to impute
if(show_progress==T){setTxtProgressBar(pb, ind)} #progress bar step

}
}
if(show_progress==T){

close(pb) #close progress bar at each end of iter=1,...,n.iter
}
CV.iter.final.score[[iter]]<-mydf # store the mydf

}
# the final output is a list of size n.iter.
# The "mydf" at place p (p=1,...,n.iter) is the CV procedure at the pth iteration
return(CV.iter.final.score)

}

1.6 function plot.best.designs

The plot_best_designs function aims at showing the nb best designs, i.e. the nb best models minimizing the
CV score. This function takes the output of the function cv.block.spls as a list.

# nb=8 by default, if nb>=10 then the plot wont order the designs well:
# please select less than 10 designs or modify the function
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plot.best.designs <- function(nb=8,my_cv_model){

# build a dataset :
pooled_df <- as.data.frame(matrix(NA,nrow=nrow(my_cv_model[[1]]),

ncol=ncol(my_cv_model[[1]])))
colnames(pooled_df) <- colnames(my_cv_model[[1]])

# get the pooled CV scores
pooled_CVscore <- 0
for(i in 1:length(my_cv_model)){

pooled_CVscore <- pooled_CVscore + my_cv_model[[i]]$CVscore}
# get the mean :
pooled_CVscore <- pooled_CVscore/length(my_cv_model)

# fill the dataset with these outputs
final_df_output <- as.data.frame(matrix(NA,ncol=ncol(my_cv_model[[1]])-1,nrow=nb))
final_df_output[,1:(length(my_cv_model[[1]])-1)] <-

my_cv_model[[1]][which(pooled_CVscore<=sort(pooled_CVscore)[nb]),
1:(length(my_cv_model[[1]])-1)]

colnames(final_df_output)<- colnames(my_cv_model[[1]][,1:(length(my_cv_model[[1]])-1)])
final_df_output$pooledCVscore <-

pooled_CVscore[which(pooled_CVscore<=sort(pooled_CVscore)[nb])]

# store all the CV scores to get the standard deviation at the end
allCVscores <- matrix(NA,ncol=length(my_cv_model),nrow=nb)
for(i in 1:length(my_cv_model)){

allCVscores[,i] <-
as.vector(my_cv_model[[i]]$CVscore[which(pooled_CVscore<=sort(pooled_CVscore)[nb])])

}
# store CV score stand deviations :
final_df_output$CVscoresd
for(k in 1:nrow(final_df_output)){

final_df_output$CVscoresd[k] <- sd(allCVscores[k,])
}

# ad the number of composants associated with each pooled CV score
final_df_output$‘number of comp‘ <- as.factor(final_df_output$‘number of comp‘)
# order the dataset to get the best polled CV scores first
final_df_output <- final_df_output[order(final_df_output$pooledCVscore),]
rownames(final_df_output)<-make.names(rep("Design",nb+1),unique=T)[-1]
final_df_output$Design <- rownames(final_df_output) #name them
final_df_output$lb <- final_df_output$pooledCVscore -

final_df_output$CVscoresd #lower bound
final_df_output$ub <- final_df_output$pooledCVscore +

final_df_output$CVscoresd #upper bound

# require ggplot and viridis
plot.out <- ggplot(final_df_output,aes(Design,pooledCVscore,col=‘number of comp‘))+

geom_point(size=4)+ theme_bw() +
theme(axis.text.x = element_text(color="black", size=10, angle=35,vjust = 0.5)) +

scale_color_manual(values=viridis(n=length(table(final_df_output$‘number of comp‘)))) +
geom_errorbar(aes(ymin = lb, ymax = ub), width = 0.2, linetype="solid", alpha=0.6,

position = position_dodge(width = 0.5), color="darkred", size=1) +
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xlab("") + ggtitle("Top designs minimizing the CV score")

# final plot and final dataset of the nb best designs:
return(list(plot.out,final_df_output))

}

Session info

sessionInfo()

## R version 4.0.5 (2021-03-31)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252
## [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C
## [5] LC_TIME=French_France.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] cowplot_1.1.0 viridis_0.5.1 viridisLite_0.3.0 mixOmics_6.14.0
## [5] ggplot2_3.3.2 lattice_0.20-41 MASS_7.3-53
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.7 RSpectra_0.16-0 plyr_1.8.6 pillar_1.4.6
## [5] compiler_4.0.5 RColorBrewer_1.1-2 tools_4.0.5 digest_0.6.26
## [9] evaluate_0.14 lifecycle_0.2.0 tibble_3.0.4 gtable_0.3.0
## [13] pkgconfig_2.0.3 rlang_0.4.10 Matrix_1.3-2 igraph_1.2.6
## [17] ggrepel_0.8.2 yaml_2.2.1 parallel_4.0.5 xfun_0.18
## [21] gridExtra_2.3 withr_2.3.0 stringr_1.4.0 dplyr_1.0.2
## [25] knitr_1.30 generics_0.0.2 vctrs_0.3.4 grid_4.0.5
## [29] tidyselect_1.1.0 glue_1.4.2 ellipse_0.4.2 R6_2.4.1
## [33] rARPACK_0.11-0 rmarkdown_2.7 tidyr_1.1.2 reshape2_1.4.4
## [37] purrr_0.3.4 corpcor_1.6.9 magrittr_1.5 matrixStats_0.57.0
## [41] scales_1.1.1 ellipsis_0.3.1 htmltools_0.5.1.1 colorspace_1.4-1
## [45] stringi_1.5.3 munsell_0.5.0 crayon_1.3.4
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Batch effect correction for Methylation and Transcriptomics blocks

Batch correction was performed (sva package) to merge FTC methylation and tran-
scriptomic data with YFS data. The representation in Supplemental Figure 2 shows
that the participants are arranged in the PCA reduced space according to the source
cohort. The nature of these differences can’t only be explained by clinical character-
istics; non-biological factors are suspected (Supplemental Figure 2). The cohort effect
was therefore corrected.

The top four plots show the projection of participants from both cohorts into the first
plane obtained by PCA as part of the batch effect correction for transcriptomic and
methylation data while the last two plots refer to the density of TPPP3 gene values
with the two cohorts combined. Before batch correction, the TPPP3 gene values are
bi-distributed due to the ”Cohort” effect.

Supplemental Figure 2: Correction of the Cohort effect for the Tran-
scriptomic and Methylation blocks
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The densities of SBP and DBP between the 2 study cohorts are substantially different
(Supplemental Figure 3). SBP and DBP densities when controlled for age and sex were
similar between the two cohorts YFS and FTC. Age and sex explain therefore a large
part of the differences in SBP and DBP between the two cohorts.

Participants from the FTC Cohort tend to have higher SBP and DBP than participants
from YFS (top). When controlled for age and sex, the blood pressure densities recenter
and almost coincide; age and sex explain much of the inter-cohort differences in SBP
and DBP.

Supplemental Figure 3: DBP and SBP densities for the training (FTC) and
testing (YFS) cohort with and without controlling by age and sex.
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Investigating the failure to integrate methylation data into modeling

The failure to integrate methylation data into the modeling raises many questions about
the possible causes of this finding. As explained in the Discussion section of the original
paper, pre-processing in an updated version was considered to investigate the impact
of methylation pre-processing and variable selection on the blood pressure predictions
obtained on the YFS cohort. 276 of the original 310 FTC participants were retained
following the methodology used in van Dongen (van Dongen, 2021) as the methyla-
tion data for these participants was obtained in a different way than in the original
paper (supplementary document, section S1). To also investigate possible problems
in the variable selection by elastic-net when pre-processing the methylation data, 30
replicated CpG sites (Richard et al, 2017) were considered instead of the selection that
was made in the original article. Single block models were explored first, i.e. only the
methylation data were trained on the 276 FTC participants before predicting the blood
measurements of the YFS participants. The coarse findings were as follows:

1. With new pre-processing and the same CpG variables as in the original study,
the methylation data persisted in failing to predict SBP and DBP among YFS
participants (p-value > 5% for both DBP and SBP, Spearman correlation nullity
test).

2. With new pre-processing and 30 replicated CpG sites, the methylation data per-
sisted in failing to predict systolic/diastolic pressure among YFS participants (p-
value > 5% for both DBP and SBP, Spearman correlation nullity test).

3. With respect to point number 2); controlling for sex and age on blood measure-
ments upstream in both cohorts did not improve predictions while age and sex
explain most of the differences between the cohorts (supplementary document,
section S6). However, controlling for sex, age and BMI upstream in the model-
ing yielded slight but still small improvements in predictions (Supplemental Table
2). The cost of these slight improvements lies in the control of gender, age and
BMI. This is in fact limiting, as it would mean no more BMI measurements in the
multi-omics modeling and no more relationships between metabolomic variables
and BMI in the modeling.

4. Controlling blood measurements by age and/or sex and/or BMI upstream of the 3-
block or 4-block modeling process would deteriate predictions. Better predictions
were obtained when the age or BMI variables were kept in the model and not
used as control variables upstream. In cases where sex, age and BMI were used
upstream to regress systolic and diastolic blood pressures (and therefore removed
from the modeling), a Spearman correlation coefficient significantly lower than
16% for SBP and DBP (higher bound, 95% confidence) is obtained for the 4-block
(with methylation) and 3-block (without methylation) models.
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It is not the pre-processing itself that seemed to be the cause of the integration failure
of methylation data, and the upstream variable selection seemed to play a somewhat
more significant role although this remains minor. To integrate methylation data into
the modeling for predictive purposes, the cost is to control the blood measurements by
several variables upstream (age, BMI, sex etc.) which to some extent goes against the
multi-omics issues. Controlling for variables such as age or BMI allows to build a model
that tends to explain what is not explained by these control variables, which does not
work particularly well for predictive purposes.

The gist of multi-omics modeling is to capture relationships between variables of dif-
ferent natures. Controlling for age or BMI variables upstream of the modeling could
be deleterious for the other omics blocks, insofar as the Clinical PRS block would lose
large predictors (and therefore the metabolomics block as well, as this block is linked
to the Clinical PRS block). As an example, the Clinical PRS block is associated to
the Metabolomics block by the BCAA-BMI relationships; the clinical variables Age
and BMI actually act as safeguards within the model. Thus, one would lose the abil-
ity to interpret the model and determine relationships between variables. Integrating
methylation data into multi-omics models to study complex phenotypes requires con-
trols that could in some extent degrade both the predictive power of the model and the
interpretation that can be drawn from it.

Supplemental Table 2: Spearman correlation coefficients between measured
and predicted systolic and diastolic measurements in the YFS cohort

Blood pressure Workflow Spearman ρ Confidence Interval (95%)

DBP New workflow 0.064 [0.010 , 0.117]
SBP New workflow 0.062 [0.008 , 0.115]
DBP Original workflow 0.045 [-0.009 ; 0.098]
SBP Original workflow 0.051 [-0.002 ; 0.104]

The differences between the two models in terms of Spearman’s coefficient remain frail.
The new workflow corresponds to the methylation data as pre-processed in van Dongen’s
paper (van Dongen et al., 2021), whereas the original workflow is the one used in the
original paper.
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